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The problem of the existence of periodic trajectories of a charged particle in a magnetic field, when the particle moves inside a 
closed convex region and is elastically reflected from its boundary, is considered. The presence of an infinite number of different 
periodic trajectories at low magnetic field strengths is established using Poincar6's geometric theorem. The conditions for two- 
link trajectories to be stable in the case of a uniform magnetic field are obtained. �9 2006 Elsevier Ltd. All rights reserved. 

1. A B I L L I A R D  I N  A M A G N E T I C  F I E L D  

Consider the motion of a charged particle of unit mass in a magnetic field. We will assume that the 
lines of induction of the magnetic field are perpendicular to a certain plane n in which the particle is 
situated, and its velocity is directed along r~. Then, the particle will remain in the plane x during the 
whole time it is moving. Its motion is described by a Hamiltonian dynamical system with the Hamilton 
function 

n = + 02.)/2 

and the symplectic structure 

o3 = du~ A d~ + d u  n A dq  - eBc - l  d~ A dr 1 

where ~, q are the Cartesian coordinates of the particle in the plane, v~, vn are the components of the 
velocity, e is the charge of the particle, c is the velocity of light, B(~, rl) is the magnetic induction and 
A is the outer product. 

An important characteristic of the motion is the Larmor radius, a quantity which is calculated from 
the formula 

R = R(~,  n )  = v c / ( e l B ( ~ ,  11)1) (1.1) 

where a~ is the particle velocity. 
We will assume that the particle remains inside a region bounded by the convex curve L throughout 

its motion, and is reflected on collision with L according to the law of a perfectly elastic impact (the 
velocity component tangent to L is conserved while the normal component changes sign). 

The magnetic induction is a unique function of two variables ~, q, specified in advance. We will call 
this dynamical system with impacts a unilateral billiard. It has been investigated by many researchers 
(see, for example, the review [1]). 

A unilateral billiard in a circle is a completely integrable system (in addition to the energy integral 
there is also an integral that is linear in the velocities). However, if we take as the boundary L an ellipse 
with unequal semi-axes, the corresponding system will not allow of an additional analytic first integral 
[2]. 
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A case of particular interest is when the direction of the magnetic field (the sign of the induction) 
reverses at each collision of the particle with the curve L. This system will be called a bilateral billiard. 

The term bilateral corresponds to the representation of a billiard as the motion of a particle along 
an extremely solid packed surface ~ on which a magnetic field, directed out of (or into) ~ acts. For 
example, one can take as t~ the surface of an ellipsoid, one of the semi-axes of which approaches zero. 
In fact, a magnetic field without singularities cannot always be directed inward or outward to a closed 
surface ~, since its flux through tJ is always equal to zero. However, in non-classical electromagnetic 
theories this is quite possible (for example, Dirac's monopole theory). A bilateral billiard gives a simple 
(true, a degenerate) model of a magnetic monopole. 

Below we consider the problem of periodic closed trajectories of billiards in a magnetic field. 
We will characterize the position of a particle on the curve L by two quantities: s - a parameter  along 

the curve L, proportional to the natural parameter, and 7the sine of the angle between the inward normal 
to L and the vector of the particle velocity immediately after recoil - the angle of reflection (compare 
with [3]). 

Following the approach described previously in [4], we determine the sequence of points s 1, s 2, . . . ,  
s n, which specify the periodic n-link trajectory of the billiard (the parameter  s' corresponds to the ith 

2 1 3 2 n n 1 1 point of collision of the particle with L). Suppose s - s ,  s - s ,  . . . ,  s - s - ,  s ,  - s n are included between 
1 1 1 0 and 2re, where s ,  - s mod2n (s, is the coordinate of the closure point of the trajectory). 1 1 

We will say that the trajectory of the billiard performs k rotations about the boundary L if s ,  - s = 
2nk. The number k defines the geometrical types of closed trajectories. Clearly, a two-link trajectory 
of a billiard (when n = 2) performs a single rotation about the curve L. 

Henceforth it will be of particular interest to represent the case when the magnetic field is uniform, 
i.e. its induction is independent of the position of the particle in the plane. In this case, between two 
collisions with the boundary, the particle moves along the arc of a circle of Larmor radius (1.1), which 
is also independent of the position of the particle. 

The two-link periodic trajectory of a unilateral billiard in a uniform magnetic field consists of two 
arcs, symmetrically positioned about their contracting chord. This chord must obviously be 
perpendicular to the curve L at points of intersection (Fig. 1). 

In a bilateral billiard, the two-link trajectory is an arc of a circle of  Larmor radius, which is 
perpendicular to the curve L at points of intersection. The charged particle traverses this arc in both 
directions (Fig. 2). 

2. T H E  C O N D I T I O N S  F O R  T H E  E X I S T E N C E  OF P E R I O D I C  
T R A J E C T O R I E S  

We will fix a constant of the energy integral: H = const > 0. In the phase space of this system with 
elastic impacts, the level of the energy D is a three-dimensional manifold with a boundary. Its boundary 
OD is a ring, corresponding to the position of the particle at the boundary L. We will consider the general 
case when the magnetic field is non-uniform. We will assume that its induction B is a smooth function 
of the Cartesian coordinates ~, rl. 

As previously [5], we can determine the curve L using Frenet 's formulae by specifying the initial 
position of the vectors of the accompanying basis at points of the curve and its curvature. With this 
specification, the curvature of the curve L will always be positive. 

At each point of the closed region, bounded by the curve L, we calculate the Larmor radius (1.1) 
and we let R m i  n be the least of the values obtained. 
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Lemma. Suppose the radius o f  curvature o f  the curve L is always less than R m i  n . Then  the trajectory 
of  a particle ejected transversely f rom a point  on the curve L,  intersects it again and also transversely. 

Proof. We release a particle from a certain point M on the curve L transversely to the boundary. We consider 
the geometrical position G of the centres of the circles of radius R m i  n - 13, where 13 is fairly small, tangent to the 
trajectory of the particle. According to the condition of the lemma, G is formed by two smooth curves [1] and 
forms the boundary of a curvilinear strip of width 2 ( R m i  n - g ) ,  the axis (the median line) of which is the trajectory 
of the particle (Fig. 3). 

The strip considered can have a self-intersection, but under the conditions of the lemma the trajectory of the 
particle cannot intersect its boundary. We will show this. 

For a certain position of the particle on the trajectory we draw a circle S' of radius R m i  n - 13, touching the trajectory 
(Fig. 4). Note that the centre of the circle S' belongs to G. We also draw a circle S" of the same radius, as that of 
S', also touching the curve L at the point M. By the condition of the lemma the curve L only intersects the circle 
S" once [1]. The trajectory of the particle also intersects the circle S' only once. In the opposite case one of the 
samples of a section of the trajectory between the intersections with S' (when we shift it along the straight line 
connecting the centres of S' and S") touches S" from the inside. 

Hence, when the particle moves, the area of that part of the plane 7t which the particle cannot enter (this is the 
strip which "is covered" by the section of length R m i  n - e in the middle of which the particle exists, while the section 
moves together with the particle along the trajectory, remaining perpendicular to the trajectory), is increased with 
a velocity of not less than ' t ) ( R m i  n - 13), whereas the region of motion of the particle is bounded by the curve L. 

Thus, being released transverse to the curve L, the particle should ultimately again appear on L, where tangent 
contact with the curve L is excluded by the condition of the lemma, which was also required. 

The main result is as follows. 

Theorem 1. U n d e r  the condit ions of  the lemma, for any n > 1 and any k < n, relatively pr ime with 
n, at least two different n-link periodic trajectories of  a unilateral billiard exist, which per form k rotations 
about  the boundary  L. In the case of  a bilateral billiard, the assertion of  the theorem remains  true for  
any even n. 

In the case o f  a uni form magnet ic  field (B = const),  a weaker  version o f  T h e o r e m  1 was stated in 
[1]: it is asserted that  under  the conditions of  the theorem for  n > 2 there is at least one  per iodic  n- 
link trajectory of  a unilateral billiard. It corresponds  to the maximum point  of  a certain funct ion o f  n 
variables (which corresponds  to the Jacobi action on a certain class of  closed curves) on a compac t  
manifold with a piecewise-smooth boundary.  However ,  the arguments  presented  in [1] cannot  be 
regarded as rigorous. A complete  variational p roof  of  T h e o r e m  1 was given in [6] for  the case when 
there is no magnet ic  field, and it uses non-trivial topological  ideas. 
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In the general case, when the magnetic field is non-uniform, one can use Novikov's variational theory, 
which touches on the existence of closed trajectories of irreversible systems with a compact two- 
dimensional configurational manifold (in our case this manifold is homeomorphic with a two-dimensional 
sphere) [7-9]. We will state the sufficient condition for at least one closed trajectory of a particle of 
unit mass to exist in a uniform magnetic field, which Novikov's theory gives 

)~v < eBc-la (2.1) 

Here ~. is the length of the boundary L and ~ is the area enclosed inside L. Condition (2.1) applies 
both for a unilateral and for a bilateral billiard. For example, i fL  is a circle of radius r, inequality (2.1) 
takes the form r > 2R, where R is the Larmor radius (1.1). With these assumptions the condition of 
Theorem 1 reduces to the inequality r < R. 

To prove Theorem 1 we use Poincar6's geometric theorem (compare with [3]). We will consider the 
Poincar6 map for the dynamical system T: 3/9 ~ 3/9. In view of the lemma, the map T is continuous 
and one-to-one. The conservation of the 2-form of the area d7/~ ds by virtue of the map T follows from 
the conservation of the 2-form to in view of the Hamiltonian system of differential equations with 
Hamiltonian H. Moreover, we note that 

T:(s,  1)---)(s, 1) and T:(s,-1)---~(s+2r~,-1) 

It is clear that the map T cannot have invariant points not lying on the boundary of the ring. Hence, 
we will consider the compound transformation consisting of T n (i.e. T applied n times) and rotations 
of the ring Rk around the centre by an angle -2r&, where k < n and the number k is relatively prime 
with n. Since Rk is obviously continuous, one-to-one and area conserving transformation of the ring 
into itself, the compositions Rk Tn satisfy all the conditions of Poincar6's geometric theorem [3, 4] and, 
consequently, have two series of geometrically different invariant points 

U, T(U), T2(U) . . . . .  T~-I(U); V, T(V), T2(V) . . . . .  T"-I(V) 

All these points are invariant under the action OfRk Tn and are rotated by an angle 2nk due to the action 
of T n. Then, to each series of points there corresponds a closed n-link trajectory of the billiard, 
performing k rotations about the curve L. 

Clearly a bilateral billiard can only have closed trajectories with an even number of links. But, to 
determine the Poincar6 map in the case of a bilateral billiard it is necessary to consider its two iterations: 
T+, corresponding to the motion of the particle along one side of the surface, and T_, corresponding 
to the motion along the reverse side (when the direction of the magnetic induction is changed). 

3. C O N D I T I O N S  OF S T A B I L I T Y  OF T W O - L I N K  T R A J E C T O R I E S  OF A 
B I L L I A R D  IN A U N I F O R M  M A G N E T I C  F I E L D  

The problem of the orbital stability of two-link trajectories of a unilateral billiard in a uniform magnetic 
field (correspondingly, of a bilateral billiard in an "almost" uniform magnetic field) reduces to 
investigating the stability of a fixed point of the corresponding doubly employed Poincar6 map T 2 (the 
composition T_ o T§ 

We introduce Cartesian coordinates (~, 11) in the plane of motion of the particle and we consider the 
iteration of the Poincar6 map. Suppose that, in the neighbourhood of the initial point of the arc of the 
trajectory between two collisions, the curve L is specified by the equation 11 = q~(~), and near the final 
point by the equation rl = W(~). 

It is convenient to write the mapping in (~, 7) coordinates, where 7 is the sine of the angle of reflection. 
For Cartesian coordinates of the centre of the Larmor circle (~, tic), along the arc of which the particle 

moves from a collision with the curve ~ to a collision with the curve W, the following formulae hold 

= - ~,~,  ( ~ ) )  (3.1) 

k(~)  = R/J1 + (~,(~))2 
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Here ~, 7s are coordinates describing the position of the particle on the curve O, and R is the Larmor 
radius. 

Iteration of the mapping is specified by the formulae 

(~i  -- ~c) 2 + ( t F ( ~ i )  -- n c )  2 = R 2 ,  7 i  ----" • c  -- t ~ ( ~ i )  + ( ~ i  -- ~ c ) ~ ' ( ~ i )  (3.2) 
n d  1 + (~p,(~i))2 

The coordinates (~i, 7i) describe the position of the particle on the curve ~F. 
Consider the case of a unilateral billiard (Fig. 5). Suppose the two-link periodic trajectory connects 

points with Cartesian coordinates (0, -1) and (0, 1), and 

~(~) = -1+a21~2/2+03(~), W(~) = l-a22~2/2+03(~) 

We will also assume that a21 > 0, a22 > 0 and a21 > a22. It is obvious that 

a21 = 1/R I, a22 = 1 / R  2 

where R1 and R 2 are the radii of curvature of the curves tI) and te at the points with Cartesian coordinates 
(0,-1) and (0, 1) respectively. 

The doubly employed Poincar6 map has a fixed point, which in (~, 7) coordinates has the form 
(0, l/R). 

We introduce the following notation 

c t = 1-21a21, c 2 = 1-2/a22, d = 21R/JR 2 - i  ~ 

Using formulae (3.1) and (3.2) we obtain, in the linear approximation, the following expressions for 
(~i, ~/i) 

l 
7;+ 

c I 

= C l C  2 -- 1 

d 

d ~s l 

- -  c 2 7 s - ~  

+ 02 (3.3) 

For the next iteration of the map T, which returns the particle to the curve O, formulae similar to 
(3.1) and (3.2) hold. Using them we obtain 

~f l 
7s- 

C 2 

= ClC 2 -- 1 
d 

d 

l 
C 1 7i  "t" ~ 

+ 02 (3.4) 

Here (~f, 7f) are the coordinates of the particle, which is once again on the curve O. 
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From formulae (3.3) and (3.4) we obtain the following well-known result [1]: in the case of a unilateral 
billiard the fixed point (0, l/R) of the doubly employed map T has a hyperbolic type when one of the 
following conditions is satisfied: R1 < 2 / <  R2 or 2 / >  R1 + R2. If one of the conditions 0 < 2 / <  R1 or 
R2 < 2 / <  R1 + R2 is satisfied, the fixed point has an elliptic type. It was also noted in [1], that the 
inequalities obtained agree exactly with the conditions for stability, which hold for a two-link trajectory 
of the "usual" billiard (for the inertial motion of a particle) (see [4]). 

We will now consider the case of a bilateral billiard (Fig. 6). Suppose a two-link periodic trajectory, 
as before, connects points with the Cartesian coordinates (0, -1)  and (0, 1). However, now 

~(~)  = - l - a l ~ + a 2 1 ~ 2 / 2 + 0 3 ( ~ ) ,  W(~) = l + a l ~ - a 2 2 ~ 2 / 2 + 0 3 ( ~ )  

Here a 1 > 0. As in the case of a unilateral billiard, we assume that a21 > 0, a22 > 0 and a21 > a22. 
Moreover, the following formulae hold 

cos ot = 1/(1 + a  , sint~ = I/R 

where tx is half the angle subtended by the arc of the circle - the two-link periodic trajectory (Fig. 7). 
The radii of curvature R1 and R2 of the curves ~ and qJ at the points with Cartesian coordinates 

(0, -1)  and (0, 1) can be calculated from the formulae 

-3/2 2 1 )-3/2 
1/R I = a21(a ~-I- 1) , 1/R 2 = a22(a I + 

respectively. 
The composition T_ o T+ has the fixed point (~, 7) = (0, 0). 
We introduce the notation 

1 - 2la21 - a 4 1 - 2/a22 - a 4 
P l  = , P2  --- 2 2 2 2 

( l + a l )  ( l + a  l) 

4 2 
21 PIP2- (  1 - a l )  21 

2' q2  = --2 
ql = 1 + a I ql K 

Iteration of the map T+: (~, 7s) ---) (~i, '~) is specified by formulae (3.1) and (3.2). From them we 
obtain 

~i = P! ql ~s "1- 0 2 

'~i q2 P2 )'s 
(3.5) 
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For iteration of the map T_, which returns the particle to the curve do, we have 

~f = P2 ql ~i +O2 

~/f q2 Pl ~/i 

Here  (~f, yf) are the coordinates of the particle, once again situated on the curve do. 
We calculate the trace of the product of the matrices from formulae (3.5) and (3.6) 

a I - 6 a  I + 1 ) a  I - 1 + 1 2(2lc~ + 2(2lcoscQ + - ' -2 - - -  5 
"C = 2 R - - ~  R2Ja~ + l ( a l +  1) 

We put 

1 j .  = ~(R 1 + R2)cos2~ + IR2 + ~(RI  - R2)2COS22~ 

Theorem 2. In the case of a bilateral billiard the fixed point (0, 0) of the composition T_ o T+ is 
(1) for 0 < a < n/4 hyperbolic, if 

R l cos2~ < 2lcos~ < Racos2~x or 

elliptic, if 

0 < 2lcos~x < R l cos2~ 

(2) for a = re/4 hyperbolic, if 

elliptic, if 

(3) for ~/4 < a < re/2 hyperbolic, if 

elliptic, if 

21cos~X > e 

or R2cos2lx < 21cos~ < I~ 

0 < , , ~ / <  R~RIR ~ 

2/cos~x > 

0 < 2/cosot < I~ 

(3.6) 

(3.7) 

The proof is based on an analysis of the trace of the product of the linearization matrices (3.7). These 
conditions become the conditions of stability of the two-link trajectory of the usual billiard as the 
magnetic field weakens (R ---) o% ~ ---) 0) (for inertial motion of the particle) (see [4]). 
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